3.5 C
Canberra
Monday, July 14, 2025

Pressure-induced crumpling of graphene oxide lamellas to attain quick and selective transport of H2 and CO2


  • Solar, P. Z. et al. Limits on fuel impermeability of graphene. Nature 579, 229–232 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Kim, H. W. et al. Selective fuel transport by means of few-layered graphene and graphene oxide membranes. Science 342, 91–95 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Chen, M. et al. Complete characterization of fuel diffusion by means of graphene oxide membranes. J. Membr. Sci. 676, 121583 (2023).

    CAS 

    Google Scholar
     

  • Li, H. et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342, 95–98 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • Polotskaya, G. A., Andreeva, D. V. & El’yashevich, G. Ok. Investigation of fuel diffusion by means of movies of fullerene-containing poly(phenylene oxide). Tech. Phys. Lett. 25, 555–557 (1999).

    CAS 

    Google Scholar
     

  • Ding, L. et al. MXene molecular sieving membranes for extremely environment friendly fuel separation. Nat. Commun. 9, 155 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. Management of fuel selectivity and permeability by means of COF-GO composite membranes for sustainable decarbonization and hydrogen manufacturing. Carbon 219, 118855 (2024).

    CAS 

    Google Scholar
     

  • Peng, Y. et al. Steel–natural framework nanosheets as constructing blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, X. et al. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metallic–natural nanosheets for fuel separation. Nat. Commun. 8, 14460 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rooney, A. P. et al. Anomalous twin boundaries in two dimensional supplies. Nat. Commun. 9, 3597 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cranford, S. W. & Buehler, M. J. Packing effectivity and accessible floor space of crumpled graphene. Phys. Rev. B 84, 205451 (2011).


    Google Scholar
     

  • Haddad, Ok. et al. Crumpled graphene oxide for enhanced room temperature fuel sensing: understanding the important roles of floor morphology and functionalization. J. Mater. Chem. A 11, 447–459 (2023).

    CAS 

    Google Scholar
     

  • Luo, J. et al. Compression and aggregation-resistant particles of crumpled tender sheets. ACS Nano 5, 8943–8949 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Landau, L. D. & Lifshitz, E. M. Principle of Elasticity (Pergamon, 1970).

  • Meshhal, M. & Kühn, O. Diffusion of water confined between graphene oxide layers: implications for membrane filtration. ACS Appl. Nano Mater. 5, 11119–11128 (2022).

    CAS 

    Google Scholar
     

  • Mouhat, F., Coudert, F.-X. & Bocquet, M.-L. Construction and chemistry of graphene oxide in liquid water from first rules. Nat. Commun. 11, 1566 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, M. et al. Giant-scale self-assembly of anisotropic graphene oxide movies by way of blade coating: sustainable design and stimuli-responsive efficiency for biomimicry. Mater. Des. 233, 112205 (2023).

    CAS 

    Google Scholar
     

  • Ma, X., Zachariah, M. R. & Zangmeister, C. D. Crumpled nanopaper from graphene oxide. Nano Lett. 12, 486–489 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Wang, W.-N., Jiang, Y. & Biswas, P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement power relationship. J. Phys. Chem. Lett. 3, 3228–3233 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Music, S. et al. Facile synthesis of crumpled graphene oxide and its excellent electrochemical efficiency as an anode in lithium ion batteries. J. Electron. Mater. 52, 877–886 (2023).

    CAS 

    Google Scholar
     

  • Kang, Y. et al. The position of nanowrinkles in mass transport throughout graphene‐primarily based membranes. Adv. Funct. Mater. 30, 2003159 (2020).

    CAS 

    Google Scholar
     

  • Zhang, P. et al. Stress pushed micron- and nano-scale wrinkles as a brand new class of transport pathways of two-dimensional laminar membranes in the direction of molecular separation. J. Membr. Sci. 648, 120354 (2022).

    CAS 

    Google Scholar
     

  • Gabardo, C. M., Yang, J., Smith, N. J., Adams-McGavin, R. C. & Soleymani, L. Programmable wrinkling of self-assembled nanoparticle movies on form reminiscence polymers. ACS Nano 10, 8829–8836 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Robeson, L. M. The higher certain revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS 

    Google Scholar
     

  • Wang, R. et al. Pyro-layered heterostructured nanosheet membrane for hydrogen separation. Nat. Commun. 14, 2161 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, S. et al. A extremely permeable graphene oxide membrane with quick and selective transport nanochannels for environment friendly carbon seize. Power Environ. Sci. 9, 3107–3112 (2016).

    CAS 

    Google Scholar
     

  • Li, P. et al. Steady crystalline graphene papers with gigapascal energy by intercalation modulated plasticization. Nat. Commun. 11, 2645 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zang, J. et al. Multifunctionality and management of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321–325 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Katsnelson, M. I. The Physics of Graphene 2nd edn (Cambridge Univ. Press, 2020).

  • Davidovitch, B. & Guinea, F. Indentation of stable membranes on inflexible substrates with van der Waals attraction. Phys. Rev. E 103, 043002 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Cerda, E. & Mahadevan, L. Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • Hure, J., Roman, B. & Bico, J. Stamping and wrinkling of elastic plates. Phys. Rev. Lett. 109, 054302 (2012).

    PubMed 

    Google Scholar
     

  • Mezard, M., Parisi, G. & Virasoro, M. A. World Scientific Lecture Notes in Physics Vol. 9 (World Scientific, 1987).

  • Principi, A. & Katsnelson, M. I. Stripe glasses in ferromagnetic skinny movies. Phys. Rev. B 93, 054410 (2016).


    Google Scholar
     

  • Mauri, A. & Katsnelson, M. I. Pissed off magnets within the restrict of infinite dimensions: dynamics and disorder-free glass transition. Phys. Rev. B 109, 144414 (2024).

    CAS 

    Google Scholar
     

  • Kamber, U. et al. Self-induced spin glass state in elemental and crystalline neodymium. Science 368, eaay6757 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Plummer, A., Hanakata, P. Z. & Nelson, D. R. Curvature as an exterior area in mechanical antiferromagnets. Phys. Rev. Mater. 6, 115203 (2022).

    CAS 

    Google Scholar
     

  • Savini, G. et al. Bending modes, elastic constants and mechanical stability of graphitic methods. Carbon 49, 62–69 (2011).

    CAS 

    Google Scholar
     

  • Abraham, J. et al. Tunable sieving of ions utilizing graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • Joshi, R. Ok. et al. Exact and ultrafast molecular sieving by means of graphene oxide membranes. Science 343, 752–754 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles