9 C
Canberra
Sunday, July 13, 2025

Revolutionizing mind‒pc interfaces: overcoming biocompatibility challenges in implantable neural interfaces | Journal of Nanobiotechnology


  • Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, Andelic N, Aries M, Bashford T, Bell MJ, Bodien YG, et al. Traumatic mind damage: progress and challenges in prevention, scientific care, and analysis. Lancet Neurol. 2022;21(11):1004–60.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kocabicak E, Temel Y, Höllig A, Falkenburger B, Tan SK. Present views on deep mind stimulation for extreme neurological and psychiatric problems. Neuropsychiatr Dis Deal with. 2015;11:1051–66.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Daskalakis ZJ. Theta-burst transcranial magnetic stimulation in melancholy: when much less Could also be extra. Mind. 2014;137(Pt 7):1860–2.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nguyen T-D, Khanal S, Lee E, Choi J, Bohara G, Rimal N, Choi D-Y, Park S. Astaxanthin-loaded brain-permeable liposomes for parkinson’s illness therapy by way of antioxidant and anti inflammatory responses. J Nanobiotechnol. 2025;23(1):78.

    CAS 

    Google Scholar
     

  • Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, et al. Restoring cortical management of purposeful motion in a human with quadriplegia. Nature. 2016;533(7602):247–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Ajiboye AB, Willett FR, Younger DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Candy JA, Hoyen HA, Keith MW, et al. Restoration of reaching and greedy actions by way of brain-controlled muscle stimulation in an individual with tetraplegia: a proof-of-concept demonstration. Lancet. 2017;389(10081):1821–30.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang H, Jiao L, Yang S, Li H, Jiang X, Feng J, Zou S, Xu Q, Gu J, Wang X, et al. Mind-computer interfaces: the modern key to unlocking neurological situations. Int J Surg. 2024;110(9):5745–62.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wandelt SK, Bjånes DA, Pejsa Ok, Lee B, Liu C, Andersen RA. Illustration of inside speech by single neurons in human supramarginal gyrus. Nat Hum Behav. 2024;8(6):1136–49.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schiavone G, Kang X, Fallegger F, Gandar J, Courtine G, Lacour SP. Pointers to check and develop tender electrode techniques for neural stimulation. Neuron. 2020;108(2):238–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Money SS, van der Smagt P, et al. Attain and Grasp by folks with tetraplegia utilizing a neurally managed robotic arm. Nature. 2012;485(7398):372–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benabid AL, Costecalde T, Eliseyev A, Charvet G, Verney A, Karakas S, Foerster M, Lambert A, Morinière B, Abroug N, et al. An exoskeleton managed by an epidural wi-fi brain-machine interface in a tetraplegic affected person: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):1112–22.

    PubMed 

    Google Scholar
     

  • Wang X, Wu S, Yang H, Bao Y, Li Z, Gan C, Deng Y, Cao J, Li X, Wang Y, et al. Intravascular supply of an ultraflexible neural electrode array for recordings of cortical spiking exercise. Nat Commun. 2024;15(1):9442.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Casson AJ, Smith S, Duncan JS, Rodriguez-Villegas E. Wearable EEG: what’s it, why is it wanted and what does it entail? Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5867–70.

    PubMed 

    Google Scholar
     

  • Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ecog, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee JM, Pyo Y-W, Kim YJ, Hong JH, Jo Y, Choi W, Lin D, Park H-G. The ultra-thin, minimally invasive floor electrode array neuroweb for probing neural exercise. Nat Commun. 2023;14(1):7088.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahnood A, Chambers A, Gelmi A, Yong Ok-T, Kavehei O. Semiconducting electrodes for neural interfacing: a assessment. Chem Soc Rev. 2023;52(4):1491–518.

    CAS 
    PubMed 

    Google Scholar
     

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP. Neuronal ensemble management of prosthetic gadgets by a human with tetraplegia. Nature. 2006;442(7099):164–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Flesher SN, Downey JE, Weiss JM, Hughes CL, Herrera AJ, Tyler-Kabara EC, Boninger ML, Collinger JL, Gaunt RA. A brain-computer interface that evokes tactile sensations improves robotic arm management. Science. 2021;372(6544):831–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hughes CL, Flesher SN, Weiss JM, Boninger M, Collinger JL, Gaunt RA. Notion of microstimulation frequency in human somatosensory cortex. Elife 2021, 10.

  • Kozai TDY, Catt Ok, Li X, Gugel ZV, Olafsson VT, Vazquez AL, Cui XT. Mechanical failure modes of chronically implanted planar silicon-based neural probes for laminar recording. Biomaterials. 2015;37:25–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Mind tissue responses to neural implants influence sign sensitivity and intervention methods. ACS Chem Neurosci. 2015;6(1):48–67.

    CAS 
    PubMed 

    Google Scholar
     

  • Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes within the mind. Nat Biomed Eng. 2017;1(11):862–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sunwoo S-H, Han SI, Joo H, Cha GD, Kim D, Choi SH, Hyeon T. Kim D-HJM: advances in tender bioelectronics for mind analysis and scientific neuroengineering. 2020, 3(6):1923–47.

  • Li X, Track Y, Xiao G, He E, Xie J, Dai Y, Xing Y, Wang Y, Wang Y, Xu S, et al. PDMS-Parylene hybrid, versatile Micro-ECoG electrode array for Spatiotemporal mapping of epileptic electrophysiological exercise from multicortical mind areas. ACS Appl Bio Mater. 2021;4(11):8013–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Khodagholy D, Gelinas JN, Thesen T, Doyle W, Devinsky O, Malliaras GG, Buzsáki G. NeuroGrid: recording motion potentials from the floor of the mind. Nat Neurosci. 2015;18(2):310–5.

    CAS 
    PubMed 

    Google Scholar
     

  • Luan L, Wei X, Zhao Z, Siegel JJ, Potnis O, Tuppen CA, Lin S, Kazmi S, Fowler RA, Holloway S, et al. Ultraflexible nanoelectronic probes kind dependable, glial scar-free neural integration. Sci Adv. 2017;3(2):e1601966.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang Q, Wu B, Castagnola E, Pwint MY, Williams NP, Vazquez AL, Cui XT. Built-in microprism and microelectrode array for simultaneous electrophysiology and Two-Photon imaging throughout all cortical layers. Adv Healthc Mater. 2024;13(24):e2302362.

    PubMed 

    Google Scholar
     

  • Kozai TDJM. The historical past and horizons of microscale neural interfaces. 2018, 9(9):445.

  • Maynard EM, Nordhausen CT, Normann RA. The Utah intracortical electrode array: a recording construction for potential brain-computer interfaces. Electroencephalogr Clin Neurophysiol. 1997;102(3):228–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Csicsvari J, Henze DA, Jamieson B, Harris KD, Sirota A, Barthó P, Sensible KD, Buzsáki G. Massively parallel recording of unit and native discipline potentials with silicon-based electrodes. J Neurophysiol. 2003;90(2):1314–23.

    PubMed 

    Google Scholar
     

  • Rousche PJ, Normann RA. Continual recording functionality of the Utah intracortical electrode array in Cat sensory cortex. J Neurosci Strategies 1998, 82(1).

  • Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Immediate neural management of a motion sign. Nature. 2002;416(6877):141–2.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher F. Built-in wi-fi neural interface primarily based on the Utah electrode array. Biomed Microdevices. 2009;11(2):453–66.

    CAS 
    PubMed 

    Google Scholar
     

  • Webster P. The way forward for brain-computer interfaces in drugs. Nat Med. 2024;30(6):1508–9.

    CAS 
    PubMed 

    Google Scholar
     

  • Yu Z, Bu T, Zhang Y, Jia S, Huang T, Liu JK. Strong decoding of wealthy dynamical visible scenes with retinal spikes. IEEE Trans Neural Netw Study Syst 2024, PP.

  • Gao X, Wang Y, Chen X, Gao SJT. Interface, interplay, and intelligence in generalized mind–pc interfaces. 2021, 25(8):671–84.

  • Shin U, Ding C, Zhu B, Vyza Y, Trouillet A, Revol ECM, Lacour SP, Shoaran M. NeuralTree: A 256-Channel 0.227-µJ/Class versatile neural exercise classification and Closed-Loop neuromodulation SoC. IEEE J Stable-State Circuits. 2022;57(11):3243–57.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsai C-W, Jiang R, Zhang L, Zhang M, Yoo J. Seizure-Cluster-Inception CNN (SciCNN): A Affected person-Unbiased epilepsy monitoring SoC with 0-Shot-Retraining. IEEE Trans Biomed Circuits Syst. 2023;17(6):1202–13.

    PubMed 

    Google Scholar
     

  • Pulicharla MR. VJWJoAET Premani 2024 AI-powered neuroprosthetics for brain-computer interfaces (BCIs). Sciences 12 1 109–15.

  • Bennett C, Samikkannu M, Mohammed F, Dietrich WD, Rajguru SM, Prasad A. Blood mind barrier (BBB)-disruption in intracortical silicon microelectrode implants. Biomaterials 2018, 164.

  • Patrick E, Orazem ME, Sanchez JC, Nishida T. Corrosion of tungsten microelectrodes utilized in neural recording functions. J Neurosci Strategies. 2011;198(2):158–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang EN, Clément JP, Alameri A, Ng A, Kennedy TE, Juncker DJAMT. Mechanically matched silicone mind implants cut back mind overseas physique response. 2021, 6(3):2000909.

  • Kozai TDY, Langhals NB, Patel PR, Deng X, Zhang H, Smith KL, Lahann J, Kotov NA, Kipke DR. Ultrasmall implantable composite microelectrodes with bioactive surfaces for power neural interfaces. Nat Mater. 2012;11(12):1065–73.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jun JJ, Steinmetz NA, Siegle JH, Denman DJ, Bauza M, Barbarits B, Lee AK, Anastassiou CA, Andrei A, Aydın Ç, et al. Absolutely built-in silicon probes for high-density recording of neural exercise. Nature. 2017;551(7679):232–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rossant C, Kadir SN, Goodman DFM, Schulman J, Hunter MLD, Saleem AB, Grosmark A, Belluscio M, Denfield GH, Ecker AS, et al. Spike sorting for big, dense electrode arrays. Nat Neurosci. 2016;19(4):634–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chung JE, Joo HR, Fan JL, Liu DF, Barnett AH, Chen S, Geaghan-Breiner C, Karlsson MP, Karlsson M, Lee KY et al. Excessive-Density, Lengthy-Lasting, and Multi-region electrophysiological recordings utilizing polymer electrode arrays. Neuron 2019, 101(1).

  • Anderson L, Antkowiak P, Asefa A, Ballard A, Bansal T, Bello A, Berne B, Bowsher Ok, Blumenkopf B, Broverman I, et al. FDA regulation of neurological and bodily drugs gadgets: entry to secure and efficient neurotechnologies for all Individuals. Neuron. 2016;92(5):943–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Welle C, Krauthamer, VJIp. FDA regulation of invasive neural recording electrodes: a frightening process for medical innovators. 2012, 3(2):37–41.

  • Obidin N, Tasnim F, Dagdeviren C. The way forward for neuroimplantable gadgets: A supplies science and regulatory perspective. Adv Mater. 2020;32(15):e1901482.

    PubMed 

    Google Scholar
     

  • Steins H, Mierzejewski M, Brauns L, Stumpf A, Kohler A, Heusel G, Corna A, Herrmann T, Jones PD, Zeck G, et al. A versatile protruding microelectrode array for neural interfacing in bioelectronic drugs. Microsyst Nanoeng. 2022;8:131.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fattahi P, Yang G, Kim G, Abidian MR. A assessment of natural and inorganic biomaterials for neural interfaces. Adv Mater. 2014;26(12):1846–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehler C, Stieglitz T, Asplund M. Nanostructured platinum grass permits superior impedance discount for neural microelectrodes. Biomaterials. 2015;67:346–53.

    CAS 
    PubMed 

    Google Scholar
     

  • Allen NJ, Barres BA. Neuroscience: Glia – extra than simply mind glue. Nature. 2009;457(7230):675–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Y, Swanson RA. Astrocytes and mind damage. J Cereb Blood Move Metab. 2003;23(2):137–49.

    PubMed 

    Google Scholar
     

  • Dong Y, Benveniste EN. Immune operate of astrocytes. Glia. 2001;36(2):180–90.

    CAS 
    PubMed 

    Google Scholar
     

  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010, 119(1).

  • Bennett C, Mohammed F, Álvarez-Ciara A, Nguyen MA, Dietrich WD, Rajguru SM, Streit WJ, Prasad A. Neuroinflammation, oxidative stress, and blood-brain barrier (BBB) disruption in acute Utah electrode array implants and the impact of deferoxamine as an iron chelator on acute overseas physique response. Biomaterials. 2019;188:144–59.

    CAS 
    PubMed 

    Google Scholar
     

  • Ferguson M, Sharma D, Ross D, Zhao F. A vital assessment of microelectrode arrays and techniques for enhancing neural interfaces. Adv Healthc Mater. 2019;8(19):e1900558.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Norden DM, Trojanowski PJ, Walker FR, Godbout JP. Insensitivity of astrocytes to Interleukin 10 signaling following peripheral immune problem ends in extended microglial activation within the aged mind. Neurobiol Growing older. 2016;44:22–41.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Linnerbauer M, Wheeler MA, Quintana FJ. Astrocyte crosstalk in CNS irritation. Neuron. 2020;108(4):608–22.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Block ML, Zecca L, Hong J-S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57–69.

    CAS 
    PubMed 

    Google Scholar
     

  • Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellívol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158(3):621–39.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Q-Q, Zhou J-W. Neuroinflammation within the central nervous system: symphony of glial cells. Glia. 2019;67(6):1017–35.

    PubMed 

    Google Scholar
     

  • Baumann N, Pham-Dinh D. Biology of oligodendrocyte and Myelin within the mammalian central nervous system. Physiol Rev. 2001;81(2):871–927.

    CAS 
    PubMed 

    Google Scholar
     

  • Chen Ok, Wellman SM, Yaxiaer Y, Eles JR, Kozai TD. In vivo Spatiotemporal patterns of oligodendrocyte and Myelin injury on the neural electrode interface. Biomaterials. 2021;268:120526.

    CAS 
    PubMed 

    Google Scholar
     

  • Wellman SM, Guzman Ok, Stieger KC, Brink LE, Sridhar S, Dubaniewicz MT, Li L, Cambi F, Kozai TDY. Cuprizone-induced oligodendrocyte loss and demyelination impairs recording efficiency of chronically implanted neural interfaces. Biomaterials. 2020;239:119842.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: attainable options to beat overseas physique response. AAPS J. 2010;12(2):188–96.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu L, Wang D, Luo Y, Liu Y, Guo Y, Yang G-Z, Qiu G. Intraoperative evaluation of microimplantation-induced acute mind irritation with titanium oxynitride-based plasmonic biosensor. Biosens Bioelectron. 2024;264:116664.

    CAS 
    PubMed 

    Google Scholar
     

  • Fong JS, Alexopoulos AV, Bingaman WE, Gonzalez-Martinez J, Prayson RA. Pathologic findings related to invasive EEG monitoring for medically intractable epilepsy. Am J Clin Pathol. 2012;138(4):506–10.

    PubMed 

    Google Scholar
     

  • Thielen B, Xu H, Fujii T, Rangwala SD, Jiang W, Lin M, Kammen A, Liu C, Selvan P, Track D et al. Making a case for endovascular approaches for neural recording and stimulation. J Neural Eng 2023, 20(1).

  • Michelson NJ, Vazquez AL, Eles JR, Salatino JW, Purcell EK, Williams JJ, Cui XT, Kozai TDY. Multi-scale, multi-modal evaluation uncovers complicated relationship on the mind tissue-implant neural interface: new emphasis on the organic interface. J Neural Eng. 2018;15(3):033001.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravikumar M, Sunil S, Black J, Barkauskas DS, Haung AY, Miller RH, Selkirk SM, Capadona JR. The roles of blood-derived macrophages and resident microglia within the neuroinflammatory response to implanted intracortical microelectrodes. Biomaterials. 2014;35(28):8049–64.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eles JR, Vazquez AL, Snyder NR, Lagenaur C, Murphy MC, Kozai TDY, Cui XT. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by reside two-photon microscopy. Biomaterials. 2017;113:279–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Petty MA, Lo EH. Junctional complexes of the blood-brain barrier: permeability adjustments in neuroinflammation. Prog Neurobiol. 2002;68(5):311–23.

    CAS 
    PubMed 

    Google Scholar
     

  • McLarnon JG. A Leaky Blood-Mind Barrier to Fibrinogen Contributes to Oxidative Harm in Alzheimer’s Illness. Antioxid (Basel) 2021, 11(1).

  • Rodrigues RO, Shin S-R, Bañobre-López M. Mind-on-a-chip: an rising platform for finding out the nanotechnology-biology interface for neurodegenerative problems. J Nanobiotechnol. 2024;22(1):573.

    CAS 

    Google Scholar
     

  • Kumar A, Loane DJ. Neuroinflammation after traumatic mind damage: alternatives for therapeutic intervention. Mind Behav Immun. 2012;26(8):1191–201.

    PubMed 

    Google Scholar
     

  • Wellman SM, Li L, Yaxiaer Y, McNamara I, Kozai TDY. Revealing Spatial and Temporal patterns of cell dying, glial proliferation, and Blood-Mind barrier dysfunction round implanted intracortical neural interfaces. Entrance Neurosci. 2019;13:493.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franz S, Rammelt S, Scharnweber D, Simon JC. Immune responses to implants – a assessment of the implications for the design of Immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.

    CAS 
    PubMed 

    Google Scholar
     

  • Sharon A, Jankowski MM, Shmoel N, Erez H, Spira ME. Inflammatory overseas physique response induced by Neuro-Implants in rat cortices depleted of resident microglia by a CSF1R inhibitor and its implications. Entrance Neurosci. 2021;15:646914.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Macauley SL, Pekny M, Sands MS. The function of attenuated astrocyte activation in childish neuronal ceroid lipofuscinosis. J Neurosci. 2011;31(43):15575–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen Ok, Eles JR, Kozai TDY. In vivo Spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials. 2022;289:121784.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kozai TDY, Vazquez AL, Weaver CL, Kim S-G, Cui XT. In vivo two-photon microscopy reveals rapid microglial response to implantation of microelectrode by way of extension of processes. J Neural Eng. 2012;9(6):066001.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A supplies roadmap to purposeful neural interface design. Adv Funct Mater 2018, 28(12).

  • Lee H, Bellamkonda RV, Solar W, Levenston ME. Biomechanical evaluation of silicon microelectrode-induced pressure within the mind. J Neural Eng. 2005;2(4):81–9.

    PubMed 

    Google Scholar
     

  • Karumbaiah L, Norman SE, Rajan NB, Anand S, Saxena T, Betancur M, Patkar R, Bellamkonda RV. The upregulation of particular Interleukin (IL) receptor antagonists and Paradoxical enhancement of neuronal apoptosis on account of electrode induced pressure and mind micromotion. Biomaterials. 2012;33(26):5983–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Nolta NF, Christensen MB, Crane PD, Skousen JL, Tresco PA. BBB leakage, astrogliosis, and tissue loss correlate with silicon microelectrode array recording efficiency. Biomaterials. 2015;53:753–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Potter KA, Buck AC, Self WK, Capadona JR. Stab damage and machine implantation inside the mind ends in inversely multiphasic neuroinflammatory and neurodegenerative responses. J Neural Eng. 2012;9(4):046020.

    PubMed 

    Google Scholar
     

  • Chen Ok, Forrest AM, Burgos GG, Kozai TDY. Neuronal purposeful connectivity is impaired in a layer dependent method close to chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024, 21(3).

  • Karumbaiah L, Saxena T, Carlson D, Patil Ok, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV. Relationship between intracortical electrode design and power recording operate. Biomaterials. 2013;34(33):8061–74.

    CAS 
    PubMed 

    Google Scholar
     

  • Wilton DK, Mastro Ok, Heller MD, Gergits FW, Prepared CR, Fahey JB, Frouin A, Daggett A, Gu X, Kim YA, et al. Microglia and complement mediate early corticostriatal synapse loss and cognitive dysfunction in huntington’s illness. Nat Med. 2023;29(11):2866–84.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goodwin JL, Uemura E, Cunnick JE. Microglial launch of nitric oxide by the synergistic motion of beta-amyloid and IFN-gamma. Mind Res. 1995;692(1–2):207–14.

    CAS 
    PubMed 

    Google Scholar
     

  • Van Mil AHM, Spilt A, Van Buchem MA, Bollen ELEM, Teppema L, Westendorp RGJ, Blauw GJ. Nitric oxide mediates hypoxia-induced cerebral vasodilation in people. J Appl Physiol (1985). 2002;92(3):962–6.

    CAS 
    PubMed 

    Google Scholar
     

  • Mendiola AS, Ryu JK, Bardehle S, Meyer-Franke A, Ang KK-H, Wilson C, Baeten KM, Hanspers Ok, Merlini M, Thomas S, et al. Transcriptional profiling and therapeutic concentrating on of oxidative stress in neuroinflammation. Nat Immunol. 2020;21(5):513–24.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prasad A, Xue Q-S, Dieme R, Sankar V, Mayrand RC, Nishida T, Streit WJ, Sanchez JC. Abiotic-biotic characterization of pt/ir microelectrode arrays in power implants. Entrance Neuroeng. 2014;7:2.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ereifej ES, Rial GM, Hermann JK, Smith CS, Meade SM, Rayyan JM, Chen Ok, Feng H. Capadona jrjfib, biotechnology: implantation of neural probes within the mind elicits oxidative stress. 2018, 6:9.

  • Prasad A, Xue Q-S, Sankar V, Nishida T, Shaw G, Streit WJ. Sanchez jcjjone: complete characterization and failure modes of tungsten microwire arrays in power neural implants. 2012, 9(5):056015.

  • Mueller NN, Kim Y, Ocoko MYM, Dernelle P, Kale I, Patwa S, Hermoso AC, Chirra D, Capadona JR, Hess-Dunning AJJM et al. Results of micromachining on anti-oxidant elution from a mechanically-adaptive polymer. 2024, 34(3):035009.

  • Jeong Y-C, Lee HE, Shin A, Kim D-G, Lee KJ, Kim D. Progress in Mind-Appropriate interfaces with tender nanomaterials. Adv Mater. 2020;32(35):e1907522.

    PubMed 

    Google Scholar
     

  • Adewole DO, Serruya MD, Wolf JA, Cullen DK. Bioactive neuroelectronic interfaces. Entrance Neurosci. 2019;13:269.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei S, Jiang A, Solar H, Zhu J, Jia S, Liu X, Xu Z, Zhang J, Shang Y, Fu X, et al. Form-changing electrode array for minimally invasive large-scale intracranial mind exercise mapping. Nat Commun. 2024;15(1):715.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Farina D, Vujaklija I, Sartori M, Kapelner T, Negro F, Jiang N, Bergmeister Ok, Andalib A, Principe J. Aszmann ocjnbe: man/machine interface primarily based on the discharge timings of spinal motor neurons after focused muscle reinnervation. 2017, 1(2):0025.

  • Hong G, Lieber CM. Novel electrode applied sciences for neural recordings. Nat Rev Neurosci. 2019;20(6):330–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Betz T, Koch D, Lu Y-B, Franze Ok, Käs JA. Development cones as tender and weak drive mills. Proc Natl Acad Sci U S A. 2011;108(33):13420–5.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Franze Ok, Janmey PA, Guck J. Mechanics in neuronal growth and restore. Annu Rev Biomed Eng. 2013;15:227–51.

    CAS 
    PubMed 

    Google Scholar
     

  • Budday S, Ovaert TC, Holzapfel GA, Steinmann P, Kuhl, EJAoCMiE. Fifty shades of mind: a assessment on the mechanical testing and modeling of mind tissue. 2020, 27:1187–230.

  • Gilletti A, Muthuswamy J. Mind micromotion round implants within the rodent somatosensory cortex. J Neural Eng. 2006;3(3):189–95.

    PubMed 

    Google Scholar
     

  • Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: tender, biohybrid, and dwelling neural interfaces. Nat Commun. 2025;16(1):1861.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carnicer-Lombarte A, Malliaras GG, Barone DG. The way forward for biohybrid regenerative bioelectronics. Adv Mater. 2025;37(3):e2408308.

    PubMed 

    Google Scholar
     

  • Boulingre M, Portillo-Lara R, Inexperienced RA. Biohybrid neural interfaces: enhancing the organic integration of neural implants. Chem Commun (Camb). 2023;59(100):14745–58.

    CAS 
    PubMed 

    Google Scholar
     

  • Rochford AE, Carnicer-Lombarte A, Curto VF, Malliaras GG, Barone DG. When bio Meets know-how: biohybrid neural interfaces. Adv Mater. 2020;32(15):e1903182.

    PubMed 

    Google Scholar
     

  • Cobb MA, Badylak SF, Janas W, Simmons-Byrd A, Boop FA. Porcine small intestinal submucosa as a dural substitute. Surg Neurol 1999, 51(1).

  • Lok J, Leung W, Murphy S, Butler W, Noviski N, Lo EH. Intracranial hemorrhage: mechanisms of secondary mind damage. Acta Neurochir Suppl. 2011;111:63–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faulk DM, Londono R, Wolf MT, Ranallo CA, Carruthers CA, Wildemann JD, Dearth CL, Badylak SF. ECM hydrogel coating mitigates the power inflammatory response to polypropylene mesh. Biomaterials. 2014;35(30):8585–95.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oakes RS, Polei MD, Skousen JL, Tresco PA. An astrocyte derived extracellular matrix coating reduces astrogliosis surrounding chronically implanted microelectrode arrays in rat cortex. Biomaterials 2018, 154.

  • Ceyssens F, Deprez M, Turner N, Kil D, van Kuyck Ok, Welkenhuysen M, Nuttin B, Badylak S, Puers R. Extracellular matrix proteins as momentary coating for thin-film neural implants. J Neural Eng. 2017;14(1):014001.

    PubMed 

    Google Scholar
     

  • Zhang L, Zhang F, Weng Z, Brown BN, Yan H, Ma XM, Vosler PS, Badylak SF, Dixon CE, Cui XT, et al. Impact of an inductive hydrogel composed of urinary bladder matrix upon purposeful restoration following traumatic mind damage. Tissue Eng Half A. 2013;19(17–18):1909–18.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu C, Liu A, Chen S, Zhang X, Chen L, Zhu Y, Xiao Z, Solar J, Luo H, Fan H. Cell-Laden electroconductive hydrogel simulating nerve matrix to ship electrical cues and promote neurogenesis. ACS Appl Mater Interfaces. 2019;11(25):22152–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Chalmers E, Lee H, Zhu C, Liu XJCM. Rising the conductivity and adhesion of polypyrrole hydrogels with electropolymerized polydopamine. 2019, 32(1):234–44.

  • Shu Q, Gu Y, Xia W, Lu X, Pang Y, Teng J, Liu B, Li YJCEJ. Injectable hydrogels for bioelectronics: A viable different to conventional hydrogels. 2024:153391.

  • Ohm Y, Pan C, Ford MJ, Huang X, Liao J, Majidi CJNE. An electrically conductive silver–polyacrylamide–alginate hydrogel composite for tender electronics. 2021, 4(3):185–92.

  • Alizadeh R, Zarrintaj P, Kamrava SK, Bagher Z, Farhadi M, Heidari F, Komeili A, Gutiérrez TJ, Saeb MR. Conductive hydrogels primarily based on agarose/alginate/chitosan for neural dysfunction remedy. Carbohydr Polym. 2019;224:115161.

    CAS 
    PubMed 

    Google Scholar
     

  • Cui Y, Zhang F, Chen G, Yao L, Zhang N, Liu Z, Li Q, Zhang F, Cui Z, Zhang Ok, et al. A stretchable and clear electrode primarily based on pegylated silk fibroin for in vivo Twin-Modal Neural-Vascular exercise probing. Adv Mater. 2021;33(34):e2100221.

    PubMed 

    Google Scholar
     

  • Ding J, Chen Z, Liu X, Tian Y, Jiang J, Qiao Z, Zhang Y, Xiao Z, Wei D, Solar J, et al. A mechanically adaptive hydrogel neural interface primarily based on silk fibroin for high-efficiency neural exercise recording. Mater Horiz. 2022;9(8):2215–25.

    CAS 
    PubMed 

    Google Scholar
     

  • Gajendiran M, Choi J, Kim S-J, Kim Ok, Shin H, Koo H-J, Kim KJJI, Chemistry E. Conductive biomaterials for tissue engineering functions. 2017, 51:12–26.

  • Schroeder ME, Zurick KM, McGrath DE, Bernards MT. Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capability. Biomacromolecules. 2013;14(9):3112–22.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhi B, Track Q, Mao Y. Vapor deposition of polyionic nanocoatings for discount of microglia adhesion. RSC Adv. 2018;8(9):4779–85.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leung BK, Biran R, Underwood CJ, Tresco PA. Characterization of microglial attachment and cytokine launch on biomaterials of differing floor chemistry. Biomaterials. 2008;29(23):3289–97.

    CAS 
    PubMed 

    Google Scholar
     

  • Bjugstad KB, Lampe Ok, Kern DS, Mahoney M. Biocompatibility of poly(ethylene glycol)-based hydrogels within the mind: an evaluation of the glial response throughout house and time. J Biomed Mater Res A. 2010;95(1):79–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Skousen JL, Bridge MJ, Tresco PA. A method to passively cut back neuroinflammation surrounding gadgets implanted chronically in mind tissue by manipulating machine floor permeability. Biomaterials. 2015;36:33–43.

    CAS 
    PubMed 

    Google Scholar
     

  • Yang Q, Wei T, Yin RT, Wu M, Xu Y, Koo J, Choi YS, Xie Z, Chen SW, Kandela I, et al. Photocurable bioresorbable adhesives as purposeful interfaces between versatile bioelectronic gadgets and tender organic tissues. Nat Mater. 2021;20(11):1559–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tang H, Li Y, Chen B, Chen X, Han Y, Guo M, Xia H-Q, Track R, Zhang X, Zhou J. In situ forming epidermal bioelectronics for day by day monitoring and complete train. ACS Nano. 2022;16(11):17931–47.

    CAS 
    PubMed 

    Google Scholar
     

  • Cho KW, Sunwoo S-H, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim D-H. Tender bioelectronics primarily based on nanomaterials. Chem Rev. 2022;122(5):5068–143.

    CAS 
    PubMed 

    Google Scholar
     

  • Xu C, Yang Y, Gao W. Pores and skin-interfaced sensors in digital drugs: from supplies to functions. Matter. 2020;2(6):1414–45.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghane-Motlagh B, Javanbakht T, Shoghi F, Wilkinson KJ, Martel R, Sawan M. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro results on neuroblast cells. Mater Sci Eng C Mater Biol Appl. 2016;68:642–50.

    CAS 
    PubMed 

    Google Scholar
     

  • Rinoldi C, Ziai Y, Zargarian SS, Nakielski P, Zembrzycki Ok, Haghighat Bayan MA, Zakrzewska AB, Fiorelli R, Lanzi M, Kostrzewska-Księżyk A, et al. In vivo power mind cortex sign recording primarily based on a tender conductive hydrogel biointerface. ACS Appl Mater Interfaces. 2023;15(5):6283–96.

    CAS 
    PubMed 

    Google Scholar
     

  • Nam J, Lim H-Ok, Kim NH, Park JK, Kang ES, Kim Y-T, Heo C, Lee O-S, Kim S-G, Yun WS, et al. Supramolecular peptide Hydrogel-Based mostly tender neural interface augments mind indicators by way of a Three-Dimensional electrical community. ACS Nano. 2020;14(1):664–75.

    CAS 
    PubMed 

    Google Scholar
     

  • Toda H, Suzuki T, Sawahata H, Majima Ok, Kamitani Y, Hasegawa I. Simultaneous recording of ECoG and intracortical neuronal exercise utilizing a versatile multichannel electrode-mesh in visible cortex. NeuroImage. 2011;54(1):203–12.

    PubMed 

    Google Scholar
     

  • Wang X, Xu M, Yang H, Jiang W, Jiang J, Zou D, Zhu Z, Tao C, Ni S, Zhou Z, et al. Ultraflexible neural electrodes enabled synchronized Lengthy-Time period dopamine detection and wideband power recording deep in mind. ACS Nano. 2024;18(50):34272–87.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim JU, Park H, Okay J, Lee J, Jung W, Kim J, Kim J, Kim S, Kim YH, Suh M, et al. Cerebrospinal Fluid-philic and Biocompatibility-Enhanced tender cranial window for Lengthy-Time period in vivo mind imaging. ACS Appl Mater Interfaces. 2022;14(13):15035–46.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim T-i, McCall JG, Jung YH, Huang X, Siuda ER, Li Y, Track J, Track YM, Pao HA, Kim R-H, et al. Injectable, cellular-scale optoelectronics with functions for wi-fi optogenetics. Science. 2013;340(6129):211–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guan S, Wang J, Gu X, Zhao Y, Hou R, Fan H, Zou L, Gao L, Du M, Li C, et al. Elastocapillary self-assembled neurotassels for secure neural exercise recordings. Sci Adv. 2019;5(3):eaav2842.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Abidian MR. Martin DCJAfm: Multifunctional nanobiomaterials for neural interfaces. 2009, 19(4):573–585.

  • Orlemann C, Boehler C, Kooijmans RN, Li B, Asplund M, Roelfsema PR. Versatile polymer electrodes for secure prosthetic visible notion in mice. Adv Healthc Mater. 2024;13(15):e2304169.

    PubMed 

    Google Scholar
     

  • Gao L, Wang J, Zhao Y, Li H, Liu M, Ding J, Tian H, Guan S, Fang Y. Free-Standing nanofilm electrode arrays for Lengthy-Time period secure neural interfacings. Adv Mater. 2022;34(5):e2107343.

    PubMed 

    Google Scholar
     

  • Agorelius J, Tsanakalis F, Friberg A, Thorbergsson PT, Pettersson LME, Schouenborg J. An array of extremely versatile electrodes with a tailor-made configuration locked by gelatin throughout implantation-initial analysis in cortex cerebri of awake rats. Entrance Neurosci. 2015;9:331.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitale F, Shen W, Driscoll N, Burrell JC, Richardson AG, Adewole O, Murphy B, Ananthakrishnan A, Oh H, Wang T, et al. Biomimetic extracellular matrix coatings enhance the power biocompatibility of microfabricated subdural microelectrode arrays. PLoS ONE. 2018;13(11):e0206137.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Laughlin SB, Sejnowski TJ. Communication in neuronal networks. Science. 2003;301(5641):1870–4.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu Y, Cui M, Patsis PA, Günther M, Yang X, Eckert Ok, Zhang Y. Reversibly assembled electroconductive hydrogel by way of a Host-Visitor interplay for 3D cell tradition. ACS Appl Mater Interfaces. 2019;11(8):7715–24.

    CAS 
    PubMed 

    Google Scholar
     

  • Fabbro A, Scaini D, León V, Vázquez E, Cellot G, Privitera G, Lombardi L, Torrisi F, Tomarchio F, Bonaccorso F, et al. Graphene-Based mostly interfaces don’t alter goal nerve cells. ACS Nano. 2016;10(1):615–23.

    CAS 
    PubMed 

    Google Scholar
     

  • Thrivikraman G, Madras G, Basu B. Intermittent electrical stimuli for steering of human mesenchymal stem cell lineage dedication in the direction of neural-like cells on electroconductive substrates. Biomaterials. 2014;35(24):6219–35.

    CAS 
    PubMed 

    Google Scholar
     

  • Rui Y, Liu J, Wang Y, Yang CJM. Parylene-based implantable Pt-black coated versatile 3-D hemispherical microelectrode arrays for improved neural interfaces. 2011, 17(3):437–42.

  • Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of various diameters: analysis of fibrous encapsulation and macrophage density. J Biomed Mater Res. 2000;52(1):231–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang H, Patel PR, Xie Z, Swanson SD, Wang X, Kotov NA. Tissue-compliant neural implants from microfabricated carbon nanotube multilayer composite. ACS Nano. 2013;7(9):7619–29.

    CAS 
    PubMed 

    Google Scholar
     

  • Boehler C, Carli S, Fadiga L, Stieglitz T, Asplund M. Tutorial: tips for standardized efficiency assessments for electrodes supposed for neural interfaces and bioelectronics. Nat Protoc. 2020;15(11):3557–78.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim D-H, Wiler JA, Anderson DJ, Kipke DR, Martin DC. Conducting polymers on hydrogel-coated neural electrode present delicate neural recordings in auditory cortex. Acta Biomater. 2010;6(1):57–62.

    CAS 
    PubMed 

    Google Scholar
     

  • Turco A, Mazzotta E, Di Franco C, Santacroce MV, Scamarcio G, Monteduro AG, Primiceri E. Malitesta cjjosse: templateless synthesis of polypyrrole nanowires by non-static solution-surface electropolymerization. 2016, 20:2143–51.

  • Inexperienced R, Abidian MR. Conducting polymers for neural prosthetic and neural interface functions. Adv Mater. 2015;27(46):7620–37.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Robbins EM, Wong B, Pwint MY, Salavatian S, Mahajan A, Cui XT. Bettering sensitivity and longevity of in vivo glutamate sensors with electrodeposited nanopt. ACS Appl Mater Interfaces. 2024;16(31):40570–80.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chapman CAR, Chen H, Stamou M, Biener J, Biener MM, Lein PJ, Seker E. Nanoporous gold as a neural interface coating: results of topography, floor chemistry, and have dimension. ACS Appl Mater Interfaces. 2015;7(13):7093–100.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cruz A, Casañ-Pastor NJTSF. Graded conducting titanium–iridium oxide coatings for bioelectrodes in neural techniques. 2013, 534:316–24.

  • Hong W, Lee JW, Kim D, Hwang Y, Lee J, Kim J, Hong N, Kwon HJ, Jang JE, Punga ARJAFM. Ultrathin gold microelectrode array utilizing polyelectrolyte multilayers for versatile and clear electro-optical neural interfaces. 2022, 32(9):2106493.

  • Lim C, Park C, Sunwoo S-H, Kim YG, Lee S, Han SI, Kim D, Kim JH, Kim D-H, Hyeon T. Facile and scalable synthesis of whiskered gold nanosheets for stretchable, conductive, and biocompatible nanocomposites. ACS Nano. 2022;16(7):10431–42.

    CAS 
    PubMed 

    Google Scholar
     

  • Carvalho-de-Souza JL, Treger JS, Dang B, Kent SBH, Pepperberg DR, Bezanilla F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron. 2015;86(1):207–17.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney PJC. Gold nanorods: synthesis, characterization and functions. 2005, 249(17–18):1870–901.

  • Perrault SD, Chan WCW. Synthesis and floor modification of extremely monodispersed, spherical gold nanoparticles of fifty–200 Nm. J Am Chem Soc. 2009;131(47):17042–3.

    CAS 
    PubMed 

    Google Scholar
     

  • Eom Ok, Kim J, Choi JM, Kang T, Chang JW, Byun KM, Jun SB, Kim SJ. Enhanced infrared neural stimulation utilizing localized floor plasmon resonance of gold nanorods. Small. 2014;10(19):3853–7.

    CAS 
    PubMed 

    Google Scholar
     

  • Yong J, Needham Ok, Brown WGA, Nayagam BA, McArthur SL, Yu A, Stoddart PR. Gold-nanorod-assisted near-infrared stimulation of main auditory neurons. Adv Healthc Mater. 2014;3(11):1862–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational concerns for the design of untethered nanomaterials in human neural stimulation. Mind Stimul. 2021;14(5):1285–97.

    PubMed 

    Google Scholar
     

  • Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, McArthur SL. Laser publicity of gold nanorods can enhance neuronal cell outgrowth. Biotechnol Bioeng. 2013;110(8):2277–91.

    CAS 
    PubMed 

    Google Scholar
     

  • Kojabad ZD, Shojaosadati SA, Firoozabadi SM, Hamedi SJJSSE. Polypyrrole nanotube modified by gold nanoparticles for enhancing the neural microelectrodes. 2019, 23:1533–9.

  • Seker E, Berdichevsky Y, Staley KJ, Yarmush ML. Microfabrication-compatible nanoporous gold foams as biomaterials for drug supply. Adv Healthc Mater. 2012;1(2):172–6.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan C, Feng Z, Gao Y, Yu J, Wu Z, Yang Z, Mao S, Guo R, Huo W, Huang X. Self-Therapeutic and Shear-Stiffening electrodes for wearable biopotential sensing and gesture recognition. ACS Sens. 2024;9(10):5253–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Du X, Jiang W, Zhang Y, Qiu J, Zhao Y, Tan Q, Qi S, Ye G, Zhang W, Liu N. Clear and stretchable graphene electrode by intercalation doping for epidermal electrophysiology. ACS Appl Mater Interfaces. 2020;12(50):56361–71.

    CAS 
    PubMed 

    Google Scholar
     

  • Li J, Cheng Y, Gu M, Yang Z, Zhan L, Du Z. Sensing and stimulation functions of carbon nanomaterials in implantable Mind-Pc interface. Int J Mol Sci 2023, 24(6).

  • Jia C, Lin Z, Huang Y, Duan X. Nanowire electronics: from nanoscale to macroscale. Chem Rev. 2019;119(15):9074–135.

    CAS 
    PubMed 

    Google Scholar
     

  • Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn J-H. 2D supplies for Pores and skin-Mountable digital gadgets. Adv Mater. 2021;33(47):e2005858.

    PubMed 

    Google Scholar
     

  • Dong M, Chen P, Zhou Ok, Marroquin JB, Liu M, Thomas S, Coleman HA, Li D, Fallon JB, Majumder MJCEJ. Versatile neural recording electrodes primarily based on diminished graphene oxide interfaces. 2023, 478:147067.

  • Kim T, Park J, Sohn J, Cho D, Jeon S. Bioinspired, extremely stretchable, and conductive dry adhesives primarily based on 1D-2D hybrid carbon nanocomposites for All-in-One ECG electrodes. ACS Nano. 2016;10(4):4770–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Kuzum D, Takano H, Shim E, Reed JC, Juul H, Richardson AG, de Vries J, Bink H, Dichter MA, Lucas TH, et al. Clear and versatile low noise graphene electrodes for simultaneous electrophysiology and neuroimaging. Nat Commun. 2014;5:5259.

    CAS 
    PubMed 

    Google Scholar
     

  • Maughan J, Gouveia PJ, Gonzalez JG, Leahy LM, Woods I, O’Connor C, McGuire T, Garcia JR, O’ Shea DG, McComish SF et al. Collagen/pristine graphene as an electroconductive interface materials for neuronal medical machine functions. Appl Mater At the moment 2022, 29.

  • Liu W, Mei T, Cao Z, Li C, Wu Y, Wang L, Xu G, Chen Y, Zhou Y, Wang S, et al. Bioinspired carbon nanotube-based nanofluidic ionic transistor with ultrahigh switching capabilities for logic circuits. Sci Adv. 2024;10(11):eadj7867.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burblies N, Schulze J, Schwarz H-C, Kranz Ok, Motz D, Vogt C, Lenarz T, Warnecke A, Behrens P. Coatings of various carbon nanotubes on platinum electrodes for neuronal gadgets: preparation, cytocompatibility and interplay with spiral ganglion cells. PLoS ONE. 2016;11(7):e0158571.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guitchounts G, Markowitz JE, Liberti WA, Gardner TJ. A carbon-fiber electrode array for long-term neural recording. J Neural Eng. 2013;10(4):046016.

    PubMed 

    Google Scholar
     

  • Salatino JW, Winter BM, Drazin MH, Purcell EK. Practical reworking of subtype-specific markers surrounding implanted neuroprostheses. J Neurophysiol. 2017;118(1):194–202.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Canales A, Jia X, Froriep UP, Koppes RA, Tringides CM, Selvidge J, Lu C, Hou C, Wei L, Fink Y, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat Biotechnol. 2015;33(3):277–84.

    CAS 
    PubMed 

    Google Scholar
     

  • Degenhart AD, Eles J, Dum R, Mischel JL, Smalianchuk I, Endler B, Ashmore RC, Tyler-Kabara EC, Hatsopoulos NG, Wang W, et al. Histological analysis of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng. 2016;13(4):046019.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, Seiffert E, Heinemann U, Friedman A. TGF-beta receptor-mediated albumin uptake into astrocytes is concerned in neocortical epileptogenesis. Mind. 2007;130(Pt 2):535–47.

    PubMed 

    Google Scholar
     

  • Kreutzberg GW. Microglia: a sensor for pathological occasions within the CNS. Traits Neurosci. 1996;19(8):312–8.

    CAS 
    PubMed 

    Google Scholar
     

  • Barrese JC, Rao N, Paroo Ok, Triebwasser C, Vargas-Irwin C, Franquemont L, Donoghue JP. Failure mode evaluation of silicon-based intracortical microelectrode arrays in non-human primates. J Neural Eng. 2013;10(6):066014.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson M, Craighead H. Cerebral astrocyte response to micromachined silicon implants. Exp Neurol. 1999;156(1):33–49.

    CAS 
    PubMed 

    Google Scholar
     

  • He W, McConnell GC, Bellamkonda RV. Nanoscale laminin coating modulates cortical scarring response round implanted silicon microelectrode arrays. J Neural Eng. 2006;3(4):316–26.

    PubMed 

    Google Scholar
     

  • Woeppel KM, Cui XT. Nanoparticle and biomolecule floor modification synergistically will increase neural electrode recording yield and minimizes inflammatory host response. Adv Healthc Mater. 2021;10(16):e2002150.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou F, He Y, Zhang M, Gong X, Liu X, Tu R, Yang B. Polydopamine(PDA)-coated diselenide-bridged mesoporous silica-based nanoplatform for neuroprotection by lowering oxidative stress and concentrating on neuroinflammation in intracerebral hemorrhage. J Nanobiotechnol. 2024;22(1):731.

    CAS 

    Google Scholar
     

  • Wadhwa R, Lagenaur CF, Cui XT. Electrochemically managed launch of dexamethasone from conducting polymer polypyrrole coated electrode. J Management Launch. 2006;110(3):531–41.

    CAS 
    PubMed 

    Google Scholar
     

  • Wang Y, Han M, Jing L, Jia Q, Lv S, Xu Z, Liu J, Cai X. Enhanced neural exercise detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel. Biosens Bioelectron. 2025;267:116837.

    CAS 
    PubMed 

    Google Scholar
     

  • Gutowski SM, Shoemaker JT, Templeman KL, Wei Y, Latour RA, Bellamkonda RV, LaPlaca MC, García AJ. Protease-degradable PEG-maleimide coating with on-demand launch of IL-1Ra to enhance tissue response to neural electrodes. Biomaterials. 2015;44:55–70.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schmidt E-M, Linz B, Diekelmann S, Besedovsky L, Lange T, Born J. Results of an interleukin-1 receptor antagonist on human sleep, sleep-associated reminiscence consolidation, and blood monocytes. Mind Behav Immun. 2015;47:178–85.

    CAS 
    PubMed 

    Google Scholar
     

  • Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials. 2016;87:157–69.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo results of L1 coating on irritation and neuronal well being on the electrode-tissue interface in rat spinal twine and dorsal root ganglion. Acta Biomater. 2012;8(10):3561–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Capeletti LB, Cardoso MB, Dos Santos JHZ, He W. Hybrid skinny movie Organosilica Sol-Gel coatings to assist neuronal progress and restrict astrocyte progress. ACS Appl Mater Interfaces. 2016;8(41):27553–63.

    CAS 
    PubMed 

    Google Scholar
     

  • Gao W, Zhang Y, Liu S, Qin YJNE. Excessive-precision technique for piezoelectric characterization of nano/microwire. 2024, 123:109392.

  • Zhu H, Solar Z, Wang X, Xia H. A Excessive-Efficiency pressure sensor for the detection of human movement and refined pressure primarily based on liquid metallic microwire. Nanomaterials (Basel) 2024, 14(2).

  • Misra A, Burke JF, Ramayya AG, Jacobs J, Sperling MR, Moxon KA, Kahana MJ, Evans JJ, Sharan AD. Strategies for implantation of micro-wire bundles and optimization of single/multi-unit recordings from human mesial Temporal lobe. J Neural Eng. 2014;11(2):026013.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou T, Hong G, Fu T-M, Yang X, Schuhmann TG, Viveros RD, Lieber CM. Syringe-injectable mesh electronics combine seamlessly with minimal power immune response within the mind. Proc Natl Acad Sci U S A. 2017;114(23):5894–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    [td_block_social_counter facebook="tagdiv" twitter="tagdivofficial" youtube="tagdiv" style="style8 td-social-boxed td-social-font-icons" tdc_css="eyJhbGwiOnsibWFyZ2luLWJvdHRvbSI6IjM4IiwiZGlzcGxheSI6IiJ9LCJwb3J0cmFpdCI6eyJtYXJnaW4tYm90dG9tIjoiMzAiLCJkaXNwbGF5IjoiIn0sInBvcnRyYWl0X21heF93aWR0aCI6MTAxOCwicG9ydHJhaXRfbWluX3dpZHRoIjo3Njh9" custom_title="Stay Connected" block_template_id="td_block_template_8" f_header_font_family="712" f_header_font_transform="uppercase" f_header_font_weight="500" f_header_font_size="17" border_color="#dd3333"]
    - Advertisement -spot_img

    Latest Articles